skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Cheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. C-Auth is a novel authentication method for smart glasses that explores the feasibility of authenticating users using the facial contour lines from the nose and cheeks captured by a down-facing camera in the middle of the glasses. To evaluate the system, we conducted a user study with 20 participants in three sessions on different days. Our system correctly authenticates the target participant versus the other 19 participants (attackers) with a true positive rate of 98.0% (SD: 2.96%) and a false positive rate of 4.97% (2.88 %) across all three days. We conclude by discussing current limitations, challenges, and potential future applications for C-Auth. 
    more » « less
    Free, publicly-accessible full text available October 8, 2024
  2. We present HPSpeech, a silent speech interface for commodity headphones. HPSpeech utilizes the existing speakers of the headphones to emit inaudible acoustic signals. The movements of the temporomandibular joint (TMJ) during speech modify the reflection pattern of these signals, which are captured by a microphone positioned inside the headphones. To evaluate the performance of HPSpeech, we tested it on two headphones with a total of 18 participants. The results demonstrated that HPSpeech successfully recognized 8 popular silent speech commands for controlling the music player with an accuracy over 90%. While our tests use modified commodity hardware (both with and without active noise cancellation), our results show that sensing the movement of the TMJ could be as simple as a firmware update for ANC headsets which already include a microphone inside the hear cup. This leaves us to believe that this technique has great potential for rapid deployment in the near future. We further discuss the challenges that need to be addressed before deploying HPSpeech at scale. 
    more » « less
    Free, publicly-accessible full text available October 8, 2024
  3. In this paper, we introduce PoseSonic, an intelligent acoustic sensing solution for smartglasses that estimates upper body poses. Our system only requires two pairs of microphones and speakers on the hinges of the eyeglasses to emit FMCW-encoded inaudible acoustic signals and receive reflected signals for body pose estimation. Using a customized deep learning model, PoseSonic estimates the 3D positions of 9 body joints including the shoulders, elbows, wrists, hips, and nose. We adopt a cross-modal supervision strategy to train our model using synchronized RGB video frames as ground truth. We conducted in-lab and semi-in-the-wild user studies with 22 participants to evaluate PoseSonic, and our user-independent model achieved a mean per joint position error of 6.17 cm in the lab setting and 14.12 cm in semi-in-the-wild setting when predicting the 9 body joint positions in 3D. Our further studies show that the performance was not significantly impacted by different surroundings or when the devices were remounted or by real-world environmental noise. Finally, we discuss the opportunities, challenges, and limitations of deploying PoseSonic in real-world applications.

     
    more » « less
    Free, publicly-accessible full text available September 27, 2024
  4. Free, publicly-accessible full text available August 1, 2024
  5. Sensing movements and gestures inside the oral cavity has been a long-standing challenge for the wearable research community. This paper introduces EchoNose, a novel nose interface that explores a unique sensing approach to recognize gestures related to mouth, breathing, and tongue by analyzing the acoustic signal reflections inside the nasal and oral cavities. The interface incorporates a speaker and a microphone placed at the nostrils, emitting inaudible acoustic signals and capturing the corresponding reflections. These received signals were processed using a customized data processing and machine learning pipeline, enabling the distinction of 16 gestures involving speech, tongue, and breathing. A user study with 10 participants demonstrates that EchoNose achieves an average accuracy of 93.7% in recognizing these 16 gestures. Based on these promising results, we discuss the potential opportunities and challenges associated with applying this innovative nose interface in various future applications. 
    more » « less
    Free, publicly-accessible full text available October 8, 2024
  6. Tsunamis from volcanic ‘explosive’ eruptions are rare, with the last catastrophic event being Krakatau in 1883 (Verbeek, 1885), during which, tsunamis were generated in the far-field by pressure shock-waves and in the nearfield of the volcano, in the Sunda Straits, by several potential geological mechanisms including pyroclastic flows, ash column, and/or caldera collapse. On 1/22/55, at about 4:15 UTC, a one in 1,000 year eruption of the Hunga Tonga-Hunga Ha’a-pai Volcano (HTHHV), that had started on12/20/21, reached its paroxysm with a series of large underwater explosions, releasing enormous energy (4-18 Mt of TNT), and ejecting a large ash plume 58 km into the stratosphere. We simulate both the near- and far-field tsunami generation from the eruption, but in this paper we focus on analyzing and validating the near-field impact against field data.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  7. Free, publicly-accessible full text available May 1, 2024
  8. The use of bioelectronic devices relies on direct contact with soft biotissues. For transistor-type bioelectronic devices, the semiconductors that need to have direct interfacing with biotissues for effective signal transduction do not adhere well with wet tissues, thereby limiting the stability and conformability at the interface. We report a bioadhesive polymer semiconductor through a double-network structure formed by a bioadhesive brush polymer and a redox-active semiconducting polymer. The resulting semiconducting film can form rapid and strong adhesion with wet tissue surfaces together with high charge-carrier mobility of ~1 square centimeter per volt per second, high stretchability, and good biocompatibility. Further fabrication of a fully bioadhesive transistor sensor enabled us to produce high-quality and stable electrophysiological recordings on an isolated rat heart and in vivo rat muscles.

     
    more » « less
    Free, publicly-accessible full text available August 11, 2024